

Behavioral Modeling and Run-Time Verification of
System-of-Systems Architectural Requirements

Doron Drusinsky, J. Bret Michael and Man-Tak Shing

Department of Computer Science
Naval Postgraduate School

833 Dyer Road, Monterey, CA 93943, USA
{ddrusins, bmichael, shing}@nps.edu

ABSTRACT

This paper addresses the need to analyze and validate the archi-
tectural requirements of complex systems-of-systems early in
the development process. We present an iterative rapid proto-
typing process for studying the temporal behavior of the sys-
tem-of-systems architecture via object-oriented architectural
models expressed in UML-RT (UML for Real-Time extension)
augmented with formal specification of timing requirements in
terms of a time-series temporal logic. The UML-RT models are
translated into coarse-grained simulation models that are exer-
cised using the OMNeT++ simulation engine. We instrument
the OMNeT++ simulation code with probes that send informa-
tion to DBRover, a time-series temporal logic tool that simu-
lates, builds, executes and monitors temporal assertions about a
target application, for temporal property verification during
prototype execution. We illustrate the proposed approach with a
case study of the sensor-netting capability of a missile defense
system.

Keywords: UML-RT, Real-time System, Temporal Logic,
Run-time Execution Monitoring, Execution-based Model
Checking, Missile Defense

1. INTRODUCTION

The analysis and architectural design of complex systems-of-
systems, such as the Ballistic Missile Defense System, pose
many challenges [2,3]. First, the system is complex and yet has
to be highly dependable. In addition, these systems are often
distributed, heterogeneous, network-centric, and software inten-
sive. Any good architecture for such systems must be easily
evolvable and reconfigurable since it has to accommodate leg-
acy systems as well as systems under development. These sys-
tems have to operate in unpredictable environments and little is
known about how to model and reasoning about such complex
systems. Feasible requirements for these systems are difficult to
formulate, understand, and meet without extensive prototyping.
Modeling and simulation holds the key to the rapid construction
and evaluation of prototypes early in the development process.
Moreover, we need a process that can be readily adaptable by
the defense industry.

There is a growing interest in using object-oriented analysis and
design techniques in conjunction with the Unified Modeling
Language (UML) [13] to develop complex systems-of-systems.
In [11], we presented an iterative process (Figure 1) for study-

ing the temporal behavior of system-of-systems architecture via
object-oriented architectural models expressed in UML-RT
(UML for Real-Time extension) [15].

The process begins with use case analysis to identify user
needs. Based on the use cases, we develop an object-oriented
distributed architecture of the system expressed in UML-RT.
We refine the internal structures of the component systems
using the Hierarchy plus Input, Process, Output (HIPO) tech-
nique [7] until components are readily mapped to modules of
the target simulation written in OMNeT++ [17]. The UML-RT
models are then translated into coarse-grained simulation mod-
els that are exercised using the OMNeT++ simulation engine.
We use the simulation to study the feasibility and correctness of
the timing requirements and apply the lessons learned to modify
the system architecture and timing constraints accordingly.

The real-time nature of the missile defense requires the support
of real-time systems whose correct behavior depends not only
on the logical result of the computation but also on the time at
which the result is produced. Traditionally, these temporal re-
quirements are expressed as hard and soft timing constraints. It
is imperative for real-time systems to meet all deadlines in hard
timing constraints but acceptable to miss the deadlines of the
soft timing constraints occasionally [8]. There are currently two
complementary approaches to evaluating the correctness of
real-time systems: static analysis of its behavior according to a
set of metrics (e.g., schedulability analysis to establish the fea-
sibility of the timing constraints) and run-time monitoring of
real-time systems to study its behavior according to a set of
metrics (e.g., release jitter, frequency and degree of tardiness).
While the static analytic approach plays an important role in
helping system designers set time budgets and allocate re-
sources in their designs, they are only effective if correct timing
constraints can be determined during the requirements analysis

Figure 1. The Iterative Prototyping Process

Use Case
Analysis

Domain Model
Construction

Requirements
Development

System Architecture
Design

Simulation
Development

Architecture
Refinement

Simulation Analysis

phase. Moreover, traditional analytical techniques are not ef-
fective in evaluating time-series temporal behaviors (e.g., the
average duration between consecutive missing deadlines within
any 10-minute interval must be greater than 5 seconds). This
kind of requirement can only be evaluated through execution of
the real-time systems or their prototypes.

This paper describes the use of time-series temporal logic to
capture the timing properties of a system-of-systems architec-
ture. The temporal assertions are input to DBRover, a time-
series temporal logic tool that builds and executes temporal
rules for the target application [5], to generate executable tim-
ing specifications. We then instrumented the OMNeT++ simu-
lation code with probes (code snippets) to send information to
DBRover for temporal property verification during prototype
execution. The rest of the paper is organized as follows. Section
2 provides an introduction to UML-RT. Section 3 gives an
overview of temporal logic and the DBRover system. Section 4
presents a case study of a missile defense system to demonstrate
the use of time-series temporal logic for the run-time verifica-
tion of timing properties. Section 5 presents a discussion of the
approach.

2. UML-RT

UML-RT is an extension of UML and is based on the concepts
underlying the ROOM language [16]—an architectural defini-
tion language developed specifically for complex real-time
software systems. UML-RT provides three principal constructs
(capsules, ports, and connectors) for modeling the structures of
a real-time system. Capsules are specialized UML active ob-
jects for modeling self-contained components of a system with
the following two restrictions: (1) capsule operations can only
be called within the capsule and (2) capsules can only commu-
nicate with other capsules through special mechanisms called
ports. Ports are objects within a capsule that act as interfaces on
the boundary of the capsule. A capsule may have one or more
ports through which it is interconnected with other capsules via
connectors. Connectors represent communication channels
through which capsules communicate via the sending and re-
ceiving of messages. Each port is associated with a protocol
that captures the semantics of the interactions between the port
and its counterpart on the opposite end of the connector.

Figure 2 shows a simple UML-RT model consisting of a set of
sensor capsules, a set of sensor fusion processor capsules and a
sensor net capsule. Each sensor capsule has three ports. It uses
one of the ports to communicate with its associated sensor fu-
sion processor capsule. Each sensor fusion processor capsule
has multiple ports for communication with its associated sen-
sors (as indicated by the multi-object icon) and uses a single
port to communicate with the sensor net capsule. The “white-

filled” icons on the sensor fusion processor capsule indicate that
the sensor fusion processor capsule plays the “slave” role of a
binary protocol when communicating with its associated sensor
capsules. A capsule may contain collaborating sub-capsules, as
shown in Figure 3, and may have at most one state machine that
specifies the dynamic behavior of the capsule.

3. METRIC TEMPORAL LOGIC WITH
TIME SERIES CONSTRAINTS

Temporal Logic is a special branch of modal logic for investi-
gating the notion of time and order. In [14], Pnueli suggested
using Linear-Time Propositional Temporal Logic (LTL) for
reasoning about concurrent programs. Since then, several re-
searchers have used LTL to state and prove correctness of con-
current programs, protocols, and hardware (e.g., [6,9]). LTL is
an extension of propositional logic where, in addition to the
propositional logic operators there are four future-time opera-
tors and four dual past-time operators: always in the future (al-
ways in the past), eventually, or sometime in the future (some-
time in the past), Until (Since), and next cycle (previous cycle).

Metric Temporal Logic (MTL) was suggested by Chang,
Pnueli, and Manna as a vehicle for the verification of real-time
systems [4]. MTL extends LTL by supporting the specification
of relative- and real-time constraints. All four LTL future-time
operators (Always, Eventually, Until, Next) can be characterized
by relative- and real-time constraints specifying the duration of
the temporal operator. Hence, for example, the MTL assertion
“Always < 20 commandResult > 0”, states that commandResult >
0 must hold every cycle until 20 cycles in the future.

MTL with time-series constraints (MTLS) enables the specifi-
cation of requirements in which propositions include temporal
instances of variables. Consider the following automotive cruise
control code with a stability assertion (using embedded Tempo-
ralRover syntax [5]) requiring speed to be 95% stable while
cruise is set and not changed:

void cruise(boolean cruiseSet, boolean cruiseChange,
 boolean cruiseOff, boolean cruiseIncr, int speed)
{
 /* Cruise Controller functionality */
 …
 /* TRBegin
 TRAssert {
 Always ({cruiseSet} =>
 {speed*0.95 < speed’ &&
 speed’ < speed*1.05}
 Until $speed$ {cruiseChange || cruiseOff})
 } => {…} // user actions
 TREnd */
}

Figure 2. A UML-RT model

<<capsule>>

: Sensor Net

<<capsule>>

: Sensor

<<capsule>>

: Sensor Fusion
Processor

Figure 3. The internal view of the sensor capsule

<<capsule>>

: CueingCapsule

<<capsule>>

: OrientationCapsule

<<capsule>>

: TrackFormingCapsule

<<capsule>>

: SFPInterfaceCapsule

: Sensor

In the example speed is a temporal data variable, which is asso-
ciated with the Until temporal operator. This association implies
that every time the Until operator begins its evaluation, possibly
in multiple instances (due to non-determinism), the speed value
is sampled and preserved in the speed variable of this instance
of the Until; this value is referred to as the pivot value for this
Until node instance. Future speed values used by this particular
evaluation of the Until statement are referred to using the prime
notation, that is, as speed’; these future instances of the speed
value are referred to as primed values. Hence, if the speed value
was 100Km/h when cruiseSet is true, then the pivot value for
speed is 100, while every subsequent speed is referred to as
speed’ and must be within 5% of the pivot speed value.

Note how speed is declared using the $speed$ notation to be a
temporal data variable associated with the Until operator. This
declaration indicates to TemporalRover that it should be sam-
pling a pivot value from the environment in the first cycle of the
Until operators lifecycle, and to refer to all subsequent samples
of speed as speed’.

Similarly, the following example consists of a monotonicity
requirement for the cruise control system, where speed is mono-
tonically increasing while the Cruise Increase (cruiseIncr) com-
mand is active:

TRAssert {
 Always ({cruiseIncr} =>
 {speed <= speed' && (speed=speed') >= 0}
 Until $speed$ {!cruiseIncr})
 } => {…} // user actions

In this example the temporal data variable speed is sampled
upon every cruiseIncr event, and is compared to the current
value (speed’) every cycle. The latest speed value is then saved
in the pivot for next cycle’s comparison.

DBRover is an MTLS monitoring tool based on the Temporal-
Rover code generator of [5]. It consists of a GUI for editing
temporal assertions, an MTLS simulator, and an MTLS execu-
tion engine. DBRover builds and executes temporal rules for a
target program or application. In run-time, DBRover listens for
messages from the target application and evaluates correspond-
ing temporal assertions. Hence, in the cruise-control example
above, DBRover will listen for Boolean messages pertaining to
the run-time values of the cruiseSet, cruiseChange, and
cruiseOff Boolean propositions, as well as the run-time value of
the speed variable. DBRover then evaluates the corresponding
MTLS assertion for that cycle. Monitoring is performed on-line,
namely, DBRover operates in tandem with the target program,
and re-evaluates assertions every cycle. DBRover uses an un-
derlying algorithm that does not store a history trace of the data
it receives; it can therefore monitor very long, and potentially
never ending, executions of target applications.

4. MISSILE DEFENSE SYSTEM – A CASE STUDY

In this section, we illustrate the formal specification and run-
time verification of timing specifications with a hypothetical
ballistic missile defense system (BMDS). The BMDS is an
integrated system-of-systems which provides a layered defense
that employs complementary sensors and weapons to engage
threat targets by land, sea, air, or space in the boost, midcourse,

and terminal phases of flight, and incrementally deploying that
capability. In parallel, sensor suites, command and control,
battle management and communication (C2BMC) will be de-
veloped to form the backbone of the BMDS.

4.1 Use Case Analysis

To understand the requirements and constraints of the proposed
system, we developed six UML use cases to identify the exter-
nal agents and systems that are involved in a typical missile-
defense scenario and the necessary interactions between these
entities:
1. Detect Potential Threat Ballistic Missile - The goal of this

use case is to detect possible threat ballistic missiles, and
push the track data onto the sensor net.

2. Generate and Transmit a Local Track - This is a sub-use
case of 1. The goal of this use case is to have a sensor gen-
erate a local track based on valid detection parameters of the
sensor.

3. Cooperatively Track and Classify Threat Ballistic Missiles -
The goal of this use case is to identify and type-classify the
threat ballistic missiles, develop fire-quality tracks for en-
gagement solutions, and forward the target track list to
weapons net.

4. Cooperative Weapons Assignment - The goal of this use
case is to assign targets to weapons via cooperative target
bidding.

5. Engage Targets - The goal of this use case is to engage
threat ballistic missile.

6. Assess Kill - The goal of this use case is to determine the
kill status of the threat ballistic missile.

Details of the use cases can be found in [10,12].

4.2 The UML-RT Architecture Models

The technological complexity, physically dispersed geography,
and distributed nature of global ballistic missile defense neces-
sitate a distributed approach to ballistic missile defense battle
management. Based on the use cases, we developed the top
level of a distributed architecture shown in Figure 4, along with
the corresponding UML-RT model shown in Figure 5.

track data

WeaponWeapon Weapon

Weapon
Platform

Weapon
Platform

weapon
command

weapon
command

weapon
command

Weapon
Net

target bids
target list,
approved
weapons
assignments

Sensor Net
(Fused Local and Remote

Track Information)

C2BMC
node

revised
track data

track
data

track data

Competent
Authority

cueing
message

proposed
weapons

assignments

target list,
approved
weapons
assignments

target bids

target list,
approved
weapons
assignments

Sensor
Controlling
Authority

cueing
messageSensor

Fusion
Processor

cueing
message

track datatrack data

sensor command

sensor
command

track data

sensor
command

track
data

Sensor
Fusion

Processor

Sensor
Controlling
Authority

track data

cueing
message

sensor
command

track
data

Remote Sensor Net Remote Sensor Net

filtered
track
data

filtered
track
data

filtered
track
data

Regional
BMC2
System

Figure 4. A distributed C2BMC architecture

The overarching C2BMC System will consist of a loosely cou-
pled set of regional C2BM systems; geographically separated
networks interconnected much like the Internet. The intent is to
allow all participants to pull the information from specific re-
gions as desired, but also to ensure that time-critical informa-
tion can be pushed to those geographically collocated units that
need it to effect destruction of a threat missile or to hand-off the
information to non-geographically collocated units as a missile
transits from one region to another. Note that the various sen-
sors and weapons may be connected to more than one regional
C2BM system via proxy. The advantage is that geographic
location is a “don’t care” in that context. The real-time nature
of the battle requires that all sensor information be local to fight
the battle. As the missile continues in its flight, the real-time
battle management, together with some of the sensors and
weapons, will handover to another regional C2BM system. The
use of the Broker pattern [1] will ease the handover of the assets
from one region to another. By distributing the networks in this
manner, information regarding any ballistic missile threat is
available and accessible to all participants as desired, but will
not overburden the network by having all the information pre-
sented to all units all the time; this will in theory provide in-
creased availability of data, more localized control, and im-
proved response times of the units to counter the threat.

Each unit (battle manager, sensor, weapons, etc.) connecting to
a regional C2BM system publishes a unit profile that contains
knowledge of the geographic location of the unit and its net-
work address so that only data and information relevant to a
particular unit (or region) is forwarded to that unit (or region).
For example, fire-control data from another theater or region
may not be useful and hence will stay local, while threat infor-
mation from other theaters or regions will probably serve as
situational awareness and be made available to other regions.

Each regional C2BM system consists of three major sub-
systems: a Sensor Net, a Weapons Net, and a C2BMC node,
where the Sensor Net refers to a distributed system that pro-
vides the sharing of track data among Sensor Fusion Processors,
Weapons Net, Weapon Platforms and the C2BMC node, the
Weapons Net refers to a distributed system for cooperative tar-
get assignment, and the C2BMC node refers to automation sup-

port for the Command/Control, Battle Management and Com-
munication (C2BMC) functions.

We refined the internal structures of the Sensor capsule, the
Sensor Net capsule and the Sensor Fusion Processor capsule
using the HIPO technique. Figures 6 shows the internal struc-
ture of the Sensor Fusion Processor (SFP) capsule, which con-
sists of five sub-capsules (Sensor Interface, Track Fusing, Col-
laborative Fusion, Track List and Sensor Net Interface). The
Sensor Interface capsule serves as the primary interface to all
assigned sensors. It sends all tracks to the Track Fusing capsule
if it is receiving data from more than one sensor; otherwise, it
passes the data directly to the Collaborative Fusion capsule. The
Track Fusing capsule takes multiple tracks per target from the
Sensor Interface capsule, correlates or fuses them into one sin-
gle track per target in real time. It also performs track discrimi-
nation as a backup to the sensor’s native discrimination capabil-
ity to prevent overload on the Sensor Net. The Collaborative
Fusion capsule takes fused or raw local tracks (one per target)
and fuses them with tracks received from other SFPs via the
Sensor Net. The Track List capsule is responsible for compiling
and providing the internal list of tracks for the SFP and prevent-
ing duplicates. It provides this data to both the Track Fusing
capsule and the Collaborative Fusion capsule, and provides this
information to other SFPs upon request via the sensor net. It
also serves as a repository for commands received from the
Sensor Net. The Sensor Net Interface capsule is responsible for
pushing tracks from the Track List capsule to the Sensor Net
and routing the incoming tracks from other SFPs via the Sensor
Net to the Collaborative Fusion Capsule. (Readers can refer to
[12] for the complete UML-RT models.)

<<capsule>>
: Sensor

Net

<<capsule>>
: Sensor
Fusion

Processor

<<capsule>>
: Sensor

ControllingAut
hority

<<capsule>>
: Competent

Authority

<<capsule>
: Weapons

Net

<<capsule>>
: C2BMC

<<capsule>>
: Remote

Sensor Net

<<capsule>>
: Sensor

<<capsule>>
: Weapon
Platform

<<capsule>>
: Weapon

Figure 5. The UML-RT model for the C2BMC architecture

Figure 6. The internal structure of the Sensor
Fusion Processor capsule

<<capsule>>

SFP1TFC: TrackFusingCapsule

<<capsule>>

SFP1SIC: SensorInterfaceCapsule

SFP1: SensorFusionProcessor

<<capsule>>

SFP1CFC: CollaborativeFusionCapsule

<<capsule>>

SFP1TLC: TrackListCapsule

<<capsule>>

SFP1SNIC: SensorNetInterfaceCapsule

(track data)

(track
data)

Figure 7. The OMNeT++ Model

SensorNet

TrackFusingCapsule SensorInterfaceCapsule

CollaborativeFusionCapsule

TrackListCapsule SensorNetInterfaceCapsule

IRSensor[0]

IRSensor[1]

RadarSensor[0] RadarSensor[1] RadarSensor[2]

RadarSensor[3]

We developed an OMNeT++ simulation shown in Figure 7 to
identify potential bottlenecks at the Sensor Fusion Processor. It
consists of twelve modules simulating the five sub-capsules of
the Sensor Fusion Processor interfacing with two satellite Sen-
sor capsules, four ground radar Sensor capsules and the Sensor
Net capsule. The internal structures of these capsules are
mapped to the C++ code of the corresponding modules. Figure
8 shows the graphical user interface for the simulation model
shown in Figure 7.

4.3 Formal Requirements Specifications and Run-time Veri-
fication of Temporal Assertions

Detection is critical to any ballistic missile defense system; the
bottom line is that if one does not see the threat missile or know
that it is coming then one cannot defend against it. The pro-
posed BMDS relies on a network of sensors to detect, discrimi-
nate and track every ballistic missile event, and provide their
parametric data on the contacts to the C2BMC to develop com-
bined tracks through fusion and correlation in order to develop
a weapons solution to prosecute the target. We can express
many of these sensor requirements formally in terms of time-
series temporal logic.

For example, the requirements that all sensor-tracks must be
correlated and fused can be expressed formally, using the Tem-
poralRover syntax, as follows:

/* TRBegin
 TRAssert For{sensorTrack1, sensorTrack2} {
 Always ({flightObjectFor(sensorTrack1) ==
 flightObjectFor(sensorTrack2)} =>
 Eventually <nn1 (
 {fusedTrackOf(sensorTrack1) != null} &&
 Eventually<nn2 (
 {fusedTrackOf(sensorTrack1).ID ==
 fusedTrackOf(sensorTrack2).ID)} &&

 monotonicity(
 fusedTrackOf(sensorTrack1))
)

)
 TREnd */

where
• For{sensorTrack1, sensorTrack2} is like the logical “forall

sensorTrack1, sensorTrack2”, the monitor will perform
separate evaluations for every pair of sensor tracks;

• fusedTrackOf(sensorTrack) provides a fused track for a
sensor track, and fusedTrackOf(sensorTrack1) != null
means that there exists a fused track for the sensorTrack;

• flightObjectFor(sensorTrack) means the actual missile fly-
ing out there that is sensed by a sensor and then captured
as sensorTrack;

• Monotonicity() is a monotonically increasing requirement
of some artifact (e.g., time with respect to a common refer-
ence); time series constraints, similar to the cruise control
constraints of section 3 are used to specify this require-
ment;

• The constants nn1 and nn2 are temporal conditions (e.g.,
durations, number of trails) or Boolean functions that can
be evaluated at run-time.

Note that although the monotonicity requirement seems trivial,
it is less trivial when considering the fact that it is a requirement
for monotonicity of a fused track, which derives its information
from a plurality of sensor tracks. If, due to an error, the software
confuses sensor tracks thereby updating fused-track information
from the wrong sensor, then from time to time it may appear
that the fused track is not advancing monotonically.

Figure 9 shows the modified OMNeT++ model with the addi-
tional RuleCheckerCapsule module. The new module receives
raw and fused track data from the SensorInterfaceCapsule and
the TrackListCapsule respectively, and executes the code snip-
pets generated by DBRover to evaluate the Boolean conditions
of the rule segments and sends the result to the DBRover Run-
time Monitor for real-time temporal rule verification (Figure
10).

Figure 8. The Graphical User Interface

Figure 9. The Modified OMNeT++ Model

SensorNet

TrackFusingCapsule SensorInterfaceCapsule

CollaborativeFusionCapsule

TrackListCapsule SensorNetInterfaceCapsule

IRSensor[0]

IRSensor[1]

RadarSensor[0] RadarSensor[1] RadarSensor[2]

RadarSensor[3]

RuleCheckerCapsule

Figure 10. Architecture of the integrated OMNeT++ Simulator /
DBRover Run-time Monitor System

OMNeT++ GUI

OMNeT++
Simulation Kernel

RuleChecker
Capsule

RadarSensor[0]

IRSensor[0]

RadarSensor[0]

IRSensor[1]

IRSensor[2]

IRSensor[3]

SensorNet

TrackFusing
Capsule

SensorInterface
Capsule

Collaborative
FusionCapsule

TrackList
Capsule

SensorNet
Interface
Capsule

OMNeT++ Simulation

OMNeT++
Simulation
System

Generated
Temporal
Rule Code

Verification
Result Viewer

DBRover

Socket
communication

of Boolean
proposition

values

DBRover
evaluates the
temporal rule

based on current
cycle values

DBRover
generates
true/false

notification
every cycle

5. DISCUSSIONS AND CONCLUSION

This paper shows that run-time monitoring and verification can
be applied much earlier in the design process, in tandem with
rapid prototyping to study the timing requirements of complex
systems. The integration of the OMNeT++ simulation with the
DBRover Run-time Monitor provides an effective way to check
for the validity of the requirements and violation of the tempo-
ral assertions. Through the Use Case-Model-Simulation feed-
back cycle, we were able to identify potential bottlenecks in the
architecture design, which led to redesign of some of its com-
ponents. Revised temporal constraints are input to DBRover to
generate executable timing specifications and new code snip-
pets for re-instrumentation of the simulation code. Moreover,
re-instrumentation of the simulation code is only needed if we
modify the Boolean conditions of the rule segments. DBRover
provides a special configuration, called the No Snippets Proto-
col, which allows the user to instrument the target code for a set
of Boolean conditions in a one-time setup, after which changes
to the rules on the DBRover side do not affect the client/target
side.

6. ACKNOWLEDGEMENTS AND DISCLAIMER

The research reported in this article was funded by a grant from
the U.S. Missile Defense Agency. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright annotations thereon.

7. REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and

M. Stal, Pattern-Oriented Software Architecture: A
System of Patterns, New York: John Wiley & Sons, 1996.

[2] D.S. Caffall and J.B. Michael, “A New Paradigm for Re-
quirements Specification and Analysis of System-of-
Systems”, Lecture Notes in Computer Science, no. 2941
(Proc. Monterey Workshop 2002: Radical Innovations
of Software and System Engineering in the Future),
Berlin: Springer-Verlag, 2004, pp. 108-121.

[3] D.S. Caffall, Conceptual Framework Approach for
System-of-Systems Software Developments, Master’s
thesis, Naval Postgraduate School, Monterey, Calif., Mar.
2003.

[4] E. Chang, A. Pnueli and Z. Manna, “Compositional
Verification of Real-Time Systems”, Proc. 9th IEEE
Symp. On Logic In Computer Science, 1994, pp. 458-
465. [5] D. Drusinsky, “The Temporal Rover and ATG Rover”,
Lecture Notes in Computer Science, no. 1885 (Proc.
Spin2000 Workshop), Berlin: Springer-Verlag, 2000, pp.
323-329.

[6] B. Hailpern and S. Owicki, “Modular Verification of Com-
munication Protocols”, IEEE Trans of Comm., COM-31,
No. 1, 1983, pp. 56-68.

[7] HIPO – A Design Aid and Documentation Technique,
Report no. GC20-1851-0, IBM Corp., White Plains, N.Y.,
1974.

[8] J. Liu, Real-Time Systems, Prentice Hall, 2000.
[9] Z. Manna and A. Pnueli, “Verification of Concurrent Pro-

grams: Temporal Proof Principles”, Lecture Notes in
Computer Science, no. 131 (Proc. of the Workshop on
Logics of Programs), Berlin: Springer-Verlag, 1981 pp.
200-252.

[10] J.B. Michael, P. Pace, M.T. Shing, M. Tummala, J. Bab-
bitt, M. Miklaski and D. Weller, Test and Evaluation of
the Ballistic Missile Defense System: FY 03 Progress
Report, Tech. Report NPS-CS-03-007, Naval Postgradu-
ate School, Monterey, Calif., Sept. 2003.

[11] J.B. Michael, M.T. Shing, J. Babbitt and M. Miklaski,
“Modeling and Simulation of System-of-Systems Timing
Constraints with UML-RT and OMNeT++”, Proc. 15th
IEEE International Rapid System Prototyping Work-
shop, Geneva, Switzerland, 28-30 June 2004.

[12] M.H. Miklaski and J.D. Babbitt, A Methodology for De-
veloping Timing Constraints for the Ballistic Missile
Defense System, Master’s thesis, Naval Postgraduate
School, Monterey, Calif., Dec. 2003.

[13] Object Management Group. OMG Unified Modeling
Language (UML) Specification 1.5, March 2003.
http://www.omg.org/technology/documents/formal/uml.ht
m

[14] A. Pnueli, “The Temporal Logic of Programs”, Proc. 18th
IEEE Symp. on Foundations of Computer Science,
1977, pp. 46-57.

[15] B. Selic and J. Rumbaugh, Using UML for Modeling
Complex Real-Time Systems, Unpublished white paper,
Apr. 4, 1998,
http://www.rational.com/media/whitepapers/umlrt.pdf

[16] B. Selic, G. Gullekson and P. Ward, Real-Time Object
Oriented modeling, New York: John Wiley & Sons,
1994.

[17] A. Varga, OMNeT++ Discrete Simulation System (Ver-
sion 2.3) User Manual, Technical University of Budapest,
Dept. of Telecommunications (BME-HIT), Hungary, Mar.
2002.

